I OFT TOLD TALE OF THE WINGED FLYING HORSE, BUT NOW WE HAVE SLEEK TWIN-TAILED COUNTERPART CAPABLE OF BLAZING A GOOD CONTEST TRAIL IN UKIE STUNT.

By Jean A. Pailet

Peg-a-sus—a winged horse; Webster's dictionary.

This Pegasus, unlike its namesake in Greek mythology, is not a flying horse; it does fly as you might imagine a horse would. The original Pegasus model, shown in the accompanying photos, did have one horse-like aspect, never: it was as heavy as a horse. It weighed 56 ounces which is kinda horse-like for a high-performance stunt model. However, in spite of its obesity (probably inherited from the designer), it flew well.

The reasons for the existence of the Pegasus model are the author's desire to determine the merits of a "flying" (or "slab") tail coupled with his naturally rebellious nature. The rebellion, of course, is against the established trend towards conformity in stunt model design. I'm just plain tired of building the same old model over and over again; which is basically the case, even when there is a bit of variance in the external shape. I, for one, am wholeheartedly for the establishment of a Scale Stunt event and am currently experimenting with a stunter utilizing a biplane configuration with just that kind of event in mind. While I am ready to admit that today's stunt models have been empirically well proven to give the best performance in the event as we know it, what I am suggesting is that what is needed is more emphasis on design originality in the scoring system in order to encourage the stunt flyers to work as hard with their heads as they presently do with their wrists. Ah, but I digress—back to the Pegasus.

As just mentioned, the present stunt rules being what they are, we are forced to conform to a general configuration. Since the Pegasus must compete under these rules, it conforms, generally. I have followed my usual practice in stunt-model design of locating both the wing and tail chord-linelines on the engine thrust-line. This tends to make the model fly more symmetrically about the pitch axis, which is of prime concern in stunting. The NACA 63018 airfoil is used with a standard flat-plate flap added inboard of the tail booms. Outboard of the booms the result is a reflex-type airfoil gradually changing to the standard 63018. Therefore, we have what is really a 15 per cent thick root airfoil increasing to an 18 per cent airfoil at the tip section. I've used this arrangement on other models and found it very (Continued on next page)