WINNER of the magnificent Nobel Challenge Trophy, more popularly known as the I.C.I. Trophy, William Houghton’s “Skyrocket” is by no means a thermal-lucky flier. The 1951 International brought the best Jetex fans in Britain to Fairlop and in the absolute calm conditions, this model and modeller from Rhyl in North Wales really ousted the field with superior flying.

His first flight in the contest was 3:4 secs. off a single ‘100’ charge, which indicates how well the designer has applied his long experience of hand-launched gliders to the Jetex powered design. Thin wings and tail with Brasso polished leading and trailing edges, to say nothing of that supersonic nose, all add up to high speed near-vertical climb for a maximum glide ratio.

As a check on performance, the prototype was brought out of hibernation over Easter this year, and on its first whole-charge flight of the day, disappeared into the blue after 9:15 secs. ! Which would appear to indicate that a dethermaliser would not be altogether amiss !

Fuselage is the first item for construction, and start by joining the two halves on the full-size parts sheet. Pin down the base longerons, add F.1, F.2, and assemble parts N.1 and N.2 for the nose portion. Fit the top longeron, add spacers and file away the longeron for P.2 and P.3. Add parts P.1, balsa block and scrap sheet, then insert ply wing mounts and balsa wing support. Cement wing rests firm and square, attaching pins with a secure cement skin. Lift off the board, cover with light tissue and screw on motor clip.

Wing and Tailplane are perfectly straight-forward, needing no special explanation, while the sheet Fin should be given a high gloss finish. All lifting surfaces should be covered with light tissue, carefully applied and doped, followed by a thin coat of fuel proofer. All-up weight, less Jetex unit, ought to be approximately 75 oz.

Trimming. Warp the last 3/8 in. of fin up to 1/4 in. to the left, and test glide, adding plasticine until the glide is just off the stall. Use a half charge, with cork packing, for first power tests and launch level just as the main power comes in. Use the tail for trim until climb is near vertical and up to 200 feet. Glide is slow and circle large, but this tightens up in a thermal. Calm air average is about 2:45 secs. Cement fin trim when satisfactory—now start thinking about that dethermaliser !
CEMENT PINS IN PLACE
COVER PYLON WITH TISSUE

3/32" SQ.

1/16" X 3/32"

PYLON CONSTRUCTION

1 1/16"

1/16" SHEET GUSSETS

WING SECTION MOD. MVA. 123.

DIHEDRAL BRACE

L.E. 3/32" X 3/32" MED.

T.E. 3/32" X 3/8" MED.

1/32" X 3/32" RIBS

1/8" X 3/32" TIPS

CUT LONGERON AWAY TO SEAT P2 & P3.

Balsa Block

1 1/2" X 3/8" X 7/16"

WING SUPPORT

SKYROCKET

1951 I.C.I. TROPHY WINNER.

DESIGNED BY W. HOUGHTON.
SKYROCKET
FULL SIZE PARTS

MAKE CRUTCH FROM 3/32" BALSA.

F1
1/16" SHEET

F2
1/16" SHEET

P1
2 OFF. 1/8" SHEET

PIN

PIN

P2

P3

1 M.M. PLY

3/32" X 1/16" FIN OUTLINE

1/16" BALSA

WING RIBS.
15 OFF. 1/32" BALSA.

WING SUPPORT
1/16" SHEET

WING RESTS
2 OFF. 1 M.M. PLY

WING TIPS
2 OFF. 3/32" SHEET

DIHEDRAL BRACE
1/32" SHEET