for the new .020 "Pee-Wee" engines...

Here it is - the model that gets you into the air today! No fussin' and foolin'! Just mount your "Pee-Wee" engine on the pre-drilled metal motor mounts, snap on wing and you're ready to fly!

$1.50
Kit No. 1-8

"BABY YANK"
23" Wingspan

The "Baby Yank" is of all-balsa construction, with combined aluminum motor mount, landing gear. Designed to fly light and fast, backed by Berkeley's 32 year experience in producing world's best model strength.

Rubber Wheels
Formed Balsa Wing
Aluminum Motor Mount & Landing Gear
Fuel-Proofed Fuselage
Color Printed Balsa

More Horsepower

Per Ounce Guaranteed Than Any Engine in the World!

The Sensational NEW DOOLING #29 ENGINE

Displacement 238 Cu. In.
Bore800"
Stroke594"
Horse power at 17,500 R.P.M. 7/4
Bare weight, approximately 6½ oz.

Compare the Dooling #29 engine at your dealers with any other — and especially read our detail sheet of exclusive features which he will gladly give you free. You will readily see why aircraft engineers rate the Dooling #29 the ultimate in engineering design and craftsmanship — and why model builders who demand the best buy Dooling.

Doooling Bros.
5452 West Adams Blvd., Los Angeles 16, Calif.

equipment only if the owner understands fully its capabilities and limitations.

My search for reliability with 465 equipment followed the most basic rule of RC operations, and that is to keep proper adjustment at all times, and especially to maintain battery voltages well above the required minimum. I have never tampered with my equipment and have found from past experience that once I make my basic distance check, I need not touch the receiver for several flying sessions.

The main expense which is higher than average, is a replacement of A batteries after every five flights. This consists of five pencils in series, which gives me a total of 7.8 volts. This expense I consider a "must" for constant reliability.

I am also a firm believer in good solder joints in running my wires to the receiver. I solder the wires to the Fahnestock clips, not inserting the wire to the clip, which may someday produce a bad connection due to dust or age.

Wiring a 465 receiver into a ship is no problem. In fact, the more wire the better as the wiring for an AR receiver acts as a receiving antenna. All wiring that is not required to serve a ship should be firmly cemented in place. When soldering to the clips, I make a 90-degree bend, ¼" from the soldered joint to absorb vibration in flight and on landings, to prevent the possibility of fatigueing wire.

As the plans indicate, I use a Burgess K45 battery for my B supply rather than hearing-aid batteries for several reasons. One, by using a K45, I charge it only once a year, which means it can be permanently installed in the airplane, with no worries of battery cases, etc. The second reason came from past experience, where I found on quite a few occasions that the wafers in hearing-aid batteries would lose contact with each other, thereby reducing my voltage. The third reason is that the Victor will handle the big battery with no ill effect on its flying characteristics.

The Sigma 4F relay also has proven very dependable if set according to the instructions which are supplied with the AR receiver. I found no need to suppress the spark at the relay, but very often clean the relay points with carbon-tet.

One problem with 465 is that you cannot have a ship painted with any type of metallic paint. In this case, I am referring to any paint that may contain aluminum dust powder. When the ship is so painted, you will get effective operation up to approximately 200 feet. Beyond that point, the ship loses any signal that might have been transmitted because of the paint's deflecting the directional signal coming from the transmitter. My experience with metallic paint was very interesting because one would never know the airplane was not receiving a signal until it was beyond the 200-foot point. All ground checks would indicate the receiver's being in perfect alignment with the transmitter.

In all my hook-ups, I used Belden "8824" which is a number 28, seven-strand wire. All my tuning have been per instructions supplied with the AR receiver, which is very simple, as there are only two adjustments, idling and tuning.

The idling core is turned in or out until it rests on the rotor with the receiver on. When the lowest valley has been found, turn the core until the needle starts to rise, stop at this point. If the needle wobbles, don't worry; with this setting, the range is doubly effective. Some receivers will come close to the instructions which indicate a setting of from .25 M.A. to .30 M.A., but others would vary.