Before the leading surface and center section of the wing are covered with sheet balsa the structure should be checked to ensure an even foundation for the sheet balsa; especially at the leading edge and rib joints, and wing tip, rib and tip joint. Sand and any irregularities in the covering smooth and apply the sheet balsa after it has been sanded to about 1/20" thick. Cement the tip to the par first and then to the ribs and leading edge and tip. Sand well dry and re-cover all joints.

The stabilizer is constructed in the same manner as the wing except, of course, no airfoil is needed. Light-weight Silkspan used to cover the wing and stabilizer. The covering should extend over the aileron also sheet edges. The plate-type rudders are cut from sheet balsa and the two pieces of each are cemented along the seam. When dry, the rudders should be well sanded to about 1/20" to a fine finish. Cement the rudders to the ends of the stabilizer.

When all covering has been shrunk tight, water clear dope should be applied. Contest performance is desired, and colored dope should be used. Our model is used as a performance sport flyer and is finished with three coats of colored dope. Developed, the performance is equal to most latest fliers. The Bee Gee Pals does not have an engine cut-off. Flights are required by timing the engine run on a full tank and then running the engine on the sand for the desired length of time before launching. The Pal’s predecessors have been equipped with Mason timer, fuel cut-off timers and long fuel tanks and all proved quite successful. If the builder does not rely on cross country chases to retrieve his model, we recommend that one of these methods be used to limit the engine run time.

The engine is held in place with round head wood screws. The required down thrust is built into the structure. However, about two degrees of right thrust should be installed before the initial flight. Slight left rudder will cause a left glide while the climb will be to the right because of the right thrust. Needless to say, if fuel-proof products were not used the entire model should receive a coat of clear fiberglass primer.

Complete hand glide testing should precede powered flight. Glide should be very flat and slightly to the left. Control the gliding angle by adjusting the stabilizer angle. If the model stalls under power, increase the down thrust. Increase the right thrust if the model flies straight under power.

The Victor

(Continued from page 30)

The Victor proved to be the ideal combination for contest work. With the K&B .15 I used a Froom T-23A tank, and with the K&B .19, a T-23B tank.

The nose wheel structure is made up of three wires. The reason for this is so the wheel can be replaced if it has been damaged, without removing the complete nose assembly. Cloth stitched hinges were used on the rudder and to this date show no signs of wear. They have proven friction free, reducing the amount of drag on the linkage system.

The bottom door was made up of 1/16" sheet balsa with a 3/8" balsa sheet cemented on the inside of the 3/8", completely fitted to flush with the rest of the fuselage, hinged to the front bottom and with a snap on the rear bottom. The first Victor weighed 4 lbs. Those who build a heavier ship will find that adding 3" inch positive incidence under the leading edge of the wing will be required. Also, the builders with heavier ships who want shorter take-offs, should move the main gear forward 3" of an inch.

The photographs shown are of the second Victor built, equipped with a triple escapement arrangement, which appeared in the June, 1956 issue of Model Airplane News, giving full rudder, elevator and aileron control.

The original Victor has been flying for the past two years on Citizenship 465 (ARB) equipment, with a Babcock compound escapement, using three pencells in series, with light spring and 3/16" rubber. During that time the equipment has proven to be very reliable. The Babcock compound escapement, when new, should be broken in on the bench for about 300 turns to reduce the possibilities of a locked rudder in the air. I have followed this procedure before installing mine in the Victor, and to date, in more than 700 flights, it has never been necessary to remove it from the ship. My linkage assisted the Babcock to perform to its fullest capacity because of its suspension at only two points which are metal, one through the aluminum plate on the escapement, and the other through a metal eyelet embedded in the back of the fuselage, giving me the least possible amount of drag.

Ever since I have been on 465, I have been amazed at the amount of distrust fellow modelers have, from California to Washington, for 465 equipment. They doubt its reliability. Reliability on a long-term basis can be achieved with any