The reason for BLAST'S greater power is its 50% nitro content. However, Fox has succeeded in solving the preignition and sensitivity problems heretofore encountered in fuels with high nitro content.

In the three months that BLAST has been on the market, its users have found that despite the few pennies extra cost, BLAST is the cheapest hop-up job you can give your motor!

PROOF POSITIVE THAT BLAST IS THE MOST POWERFUL FUEL

Fox Manufacturing Company

Fort Smith, Arkansas

PINTS ONLY $1.25

BUILD A “HAPPY” R/C SYSTEM with Bonner equipment

- Smooth, dependable operation, and exceptionally long service life.
- Greater output power with less weight and battery drain.
- Low cost, resulting from advanced design concepts and very precise mass production methods.

BONNER DURAMITE Multi-Servo

FOR S.N. TRIM OR PROPORTIONAL CONTROL

1/8" INCH

$12.95

BONNER Servo Amplifier

TRANSMITTER CIRCUIT TO ADAPT BONNER DURAMITE SERVO TO RELAYLESS OPERATION

$19.95

BONNER Servo Transmitter Multi-Servo

FOR USE WITH THE NEW RELAYLESS RADIOS.

NEUTRAL TUNING OR TRIM - $29.95 Trim only - $27.95

R/C ACCESSORIES

- **BONNER NYLON CONTROL HORN** - 25¢ for Radio or U control use on rudder.
- **BONNER NYLON TAIL WHEEL BRACKET - 50¢**
- **BONNER Custom Hook-Up Wire - 60¢ Pkg.**

Since 1949, Bonner R/C equipment has been used almost unanimously in contest winning airplanes and in successful beginner and experimental projects. Leading hobby shops have a complete line of Bonner products in stock and helpful information on R/C.

Bonner Specialties

2900 Tilden Avenue

Los Angeles 64, Calif.

Wee Bee

(Continued from page 20)

rudder fin to center of stabilizer, pregluing, of course, using cement throughout, unless otherwise directed. Mark the former positions on the inside of the fuselage sides by laying them on the plans. Remember to turn over the plans to mark one side. The plans can be perforated with a pin to mark the formers on the opposite side. Belay the rear inside of the fuselage sides, removing approximately 1/32". More must be removed above the stabilizer notch in order to insert the rudder fin. Glue the fuselage sides, rudder fin and stabilizer together as a unit. Glue in the formers and cross-members, working from the rear to front of fuselage. Drill hole in firewall for fuel line and glue in place with slow dry cement. Remember to fill 1/16" glue scrap 1/4" x 1/4" balsa in place behind fire wall for additional strength. Pin holes can be avoided by steam the fuselage sides while gluing in forward formers. Add 1/16" square stringers. Top of fuselage is planked with 1/32" contest grade balsa. Be sure to pick balsa that bends easily with the grain. The pieces are pre-cut by steaming and bending to shape with the fingers. The sput of a coffee pot works well for this operation, but be careful not to scar yourself.

Cut the wing from the same 1/32" sheet and mark the rib positions on the inside of one panel. Start marking from the wing tips center, following the measurements on the plans. The inboard panel will be longer if the procedure has been followed correctly. Score the tips on the outside of each panel, as shown, with a sharp knife or razor blade. Notch tips, as shown. Precut each panel, by steaming, to the proper airfoil shape. Rib pattern is shown by dotted lines on the side view. Sand 1/16" sheet ribs together and punch holes for leadouts. All ribs punched for lightness. Glue ribs in place in lower wing panel. Bell crank is cut from 1/32" plywood 24-gauge aluminum or tin can stock. It is drilled and bolted to bell crank mount which is a 1/32" plywood and 1/16" balsa sandwich. Leadouts are made of .049 Dacron flying lines, and are tied and glued to bell crank. Be certain there is no drag or tightness anywhere. Free controls are an absolute must on light models. Mark the position of a push rod in the upper wing panel and glue in place. To do this, start by gluing the leading edge in place with cement and hold it against a flat surface until dry. Then apply slow dry Ambroid to the tops of ribs with a glue gun. Cement trailing edge of wing. Turn wing over in position until dry. This insures a true wing with no unsightly pin holes. Moisten the tips at the score marks, and glue together with cement. Four or five coats of cement may be necessary to fill in the score marks and edges of the wing. Leadout tubes, or holes lined with a glue bead, are added as the tip is glued together. Plastic tubes were used because metal cuts the lines if improperly de-burred. Glue 1/16" balsa aileron parts in position on wing. 1/16" round mixer sticks were used to join flaps and elevators, length being determined by their components. Hinges are made of 3/8" x .04" covering silk. Bend flap and elevator horn to shape. Notch elevator and flap to receive them and glue in place with cement. Prefit the wood with cement for ease in gluing on the hinges. After flaps and elevator are attached, the rudder is glued on with 3/8" offset to the outside of the circle. Fit wing into fuselage so there is 0° incidence with.