Last year, a car which followed the athlete instead of the path began to emerge as the best solution, but a car in front doesn't know where you're heading, only which way to turn to keep you in frame. This causes it to drive in circles.
Setting the car to follow a desired magnetic heading won't work on its own, because the magnetic heading isn't precise enough. The latest theory is if the car senses both a desired magnetic heading & the direction towards the human, it can stay on the path. This works only if the human is directly behind the car, with decreasing accuracy as the human moves alongside the car.
The car maneuvers so the angle from the human to the car to the desired magnetic heading is 180. The desired magnetic heading is changed from the stick controller to steer the car.
If the desired magnetic heading is off, following it leads the car off the path, but the human stays on the path. As the car heads off the path, the human-car-magnetic heading shrinks & the car turns back towards the path to make it approach 180 again. Wherever the human goes on the path, the car maneuvers to stay in front.
The 2nd case is the human alongside the car. This requires a different algorithm that maintains a fixed distance to the human. If the human gets farther away, the car steers to reduce the distance. This would be much less accurate than following behind the car.
The 3rd case is the human in front of the car. It just needs the
...Continue Reading