

Mar 24, 2011, 04:19 AM  
Joined Jul 2006
4 Posts

Hi Martyn,
Thanks for your post. I have studied the charts in your post. They're interesting although I'm not sure I fully understand them. For each propellor there is a ration P/D shown, is this diamater/pitch? Do you have a legend that describes each of the labels more fully? Thanks again, Andy 
Mar 24, 2011, 09:13 AM  
Toronto Canada
Joined Dec 2002
5,431 Posts

The Advance curves were taken from NACA Technical Report TR237.
http://aerade.cranfield.ac.uk/ara/19...report237.pdf P/D is the PitchDiameter ratio. The Power and Thrust Coefficients (Cp and Ct) may be used to calculate the propeller Power and Thrust at various airspeeds in Imperial units. The Xaxis may be considered airspeed. Pitch Speed (RPMXPitch) and maximum efficiency occurs at an Advance equal to the P/D ratio. Zero Thrust Speed occurs at an Advance of P/D+0.2 
Mar 24, 2011, 09:24 AM  

P/D is pitch/diameter, which is 0.67 for your 15x10 prop. The closest of Martyn's graphs is "propeller C". The 3 curves show power ('Cp') thrust ('Ct') and efficiency ('n'). Current draw is proportional to power, which for this prop is almost flat up to half the pitch speed.
I have highlighted the power curve in red. Unfortunately this graph does not show the static power. Although it may look like power should be a bit lower at zero airspeed (due to the blades being partially stalled) depending on blade shape it may flatten out or even increase slightly. At high airspeed the prop 'unloads', reducing power and current draw (down to ~20% at pitch speed). How much unloading you will get depends on how fast your model flies. A glider at max climb rate will probably be flying quite slow, and therefore will not unload significantly. However the battery's voltage will sag as it discharges, and the motor's resistance will increase as it warms up, so you can expect the average inair current to be lower than the peak static measurement with a fresh battery. 
Mar 24, 2011, 12:57 PM  

I use motocalc, which tries to simulate in air performance http://motocalc.com/
Ground testing matches pretty well to the program's numbers, I don't have an in the air measurement system but subjectivly Motocalc seems to be close based on my experience. 
Mar 24, 2011, 03:14 PM  
Toronto Canada
Joined Dec 2002
5,431 Posts

Quote:
They are down to about 20% at VIRTUAL PITCH SPEED or ZERO THRUST SPEED as a result of the profile drag of the prop. There has been considerable confusion in the past about the definition of PITCH SPEED. PITCH SPEED (RPM X PITCH) occurs at an Advance equal to the P/D ratio. For a prop with a P/D ratio of 0.7 the PITCH SPEED occurs at an Advance of 0.7. At this Advance, the vector sum of the forward and rotational velocities of the prop give an effective angle of attack along the entire prop blade of zero degrees and a maximum efficiency for flatbottomed airfoils (propellers). This is why props are twisted. In full scale aircraft the propeller, plane and engine combination are designed to cruise at PITCH SPEED because this speed gives maximum prop efficiency. ZERO THRUST SPEED or VIRTUAL PITCH SPEED occurs at an Advance of P/D + 0.2 which can be 20% to 40% faster than PITCH SPEED depending on the P/D ratio. The 0.2 factor occurs because propellers still have thrust at negative angles of attack (about 5 degrees for flatbottomed airfoils). My point is that PITCH SPEED and VIRTUAL PITCH SPEED are two different entities. It is possible to fly faster than PITCH SPEED because propellers still generate Thrust at negative angles of attack. The Xaxis of the Advance curves although normally considered to be airspeed may also be thought of as effective angle of attack with PITCH SPEED being zero degrees and ZERO THRUST SPEED (VIRTUAL PITCH SPEED) being 5 degrees. For the prop in question, the STATIC effective angle of attack would be about 17.5 degrees. 

Mar 24, 2011, 04:28 PM  

Quote:
The amount of difference between geometric and virtual pitch depends on the airfoil shape of the blades and how closely the blade twist matches a true helical pitch along the blade. Also, the designated pitch for a particular prop might not match its true pitch (eg. GWS EP7035 is supposed to be 3.5" pitch, but according to my measurements it's closer to 2.5"). Without wind tunnel testing it is hard to know exactly what the true pitch and loading of a prop is, so calc programs just have to make a guess. Unfortunately they don't always get it right. Here's a Motocalc prediction for 50mph pitch speed, showing thrust and power dropping to zero at only 48mph! (it does manage to get the efficiency about right though). This may explain why it often underestimates the top speed of fast models... 

Mar 24, 2011, 08:06 PM  
Toronto Canada
Joined Dec 2002
5,431 Posts

I'm curious about the Motocalc results.
From the NACA Advance curves it may be seen that at zero thrust the Power absorbed by a prop does not go to zero because of its inherent profile drag. Motocalc indicates zero power at zero thrust. Also the Motocalc ThrustEfficiency curves indicate the highest efficiency at zero power. Is there something wrong with the inputs or should someone give Motocalc a call? 
Mar 25, 2011, 01:01 AM  

Quote:
There are a few other improvements I would also like to see, so I might compile a list and send it to stefanv. 

Thread Tools  
Similar Threads  
Category  Thread  Thread Starter  Forum  Replies  Last Post 
Discussion  Transparency In Action: Gov't blocked scientists on spill estimate  n00bE  Life, The Universe, and Politics  3  Oct 07, 2010 04:19 AM 
Discussion  How much extra current drawn by ground testing?  Johnnz  Power Systems  23  Dec 08, 2009 08:42 AM 
Discussion  Gyro tweaking in air vs on the ground  billyzelsnack  Micro Helis  0  May 08, 2006 06:33 PM 
Problem on EPS 400C Vs EPS 300C for Slow Stick?? Amount of Current Drawn...  eta  Parkflyers  1  Feb 23, 2003 09:24 AM  
What is going to take more abuse on the ground and in the air, a composit wing or foa  Giovanni Day  Electric Sailplanes  1  May 13, 2002 10:59 PM 