Mar 05, 2006, 04:09 AM Registered User Joined Mar 2006 41 Posts Discussion How do propeller sizes work?? Say My plane needed a 9x6 prop what does this mean, im probably going to kick mylself in the log whne somone tells me but mayaswell find out sooner than later, yes I am a noob :P
 Sign up now to remove ads between posts
 Mar 05, 2006, 06:00 AM RIP "Long Shadow Flyer" Upstate New York-- Rochester, NY USA Joined Oct 2001 732 Posts Propeller Size: 9X6 The first number is the Diameter of the prop 9", the second number is the Pitch 6 The Pitch is the distance the prop will travel in one revolution.. in this case 6" The higher the pitch the more distance covered for a given number of RPMs, as a general rule higher pitch = faster plane, Lower Pitch more Power (torque) Hope this helps Carl
 Mar 05, 2006, 06:00 AM Frequent Flyer Kalamazoo, MI USA Joined Aug 2003 2,892 Posts The prop is 9" in diameter with a 6" pitch. That means it would travel 6" forward in one revolution if it were in a solid.
 Mar 05, 2006, 08:36 AM Proud member of LISF and ESL LI, New York, USA Joined Mar 2003 24,240 Posts This is WAY WAY more than you asked for, but it may help answer a lot of questions that will come up along the way. SIZING POWER SYSTEMS FOR ELECTRIC AIRPLANES by Ed Anderson aeajr on the forums This may get a little technical but I will try to keep it as simple as I can. I will draw parallels to cars and bicycles in many places as most people can relate to these and know at least a little about how they work. I will use round numbers where I can and will use some high level examples. If you are an engineer you will see that I am taking some liberties here for the sake of simplicity. I will go through the parts of the power system, then, toward the end, I will show you how we tie these all together to come up with a complete power system. POWER = WATTS I will be using the terms Volts, Amps and Watts throughout this discussion. Let me define them. Volts = the pressure at which the electric energy is being delivered - like pounds per square inch or PSI in a fuel system or water from a garden hose. Volts is about pressure, it says nothing about flow. You will see volts abreviated as V. Amps = the quantity or flow of electricty being delivered, like gallons per minute in a fuel system or that same garden hose. Amps is about flow, it says nothing about pressure. You will see amps abreviated as A. Watts = V X A. This is a measure of the energy or power being delivered. This is how we measure the ability of that electricity to do work, in our case the work of turning a propeller to move our airplane through the air. Watts is about both pressure and flow. This serves the same purspose as the horsepower rating of your car's engine. In fact 746 watts = 1 horsepower. So if you had an electric car, the strength of its motor could be reported in either watts or horsepower. You will see watts abreviated as W. If you want more depth on this, visit this thread. http://www.wattflyer.com/forums/showthread.php?t=1933 MOTOR EFFICENCY - Brushed vs Brushless Whether brushed or brushless, the motor's job is to convert electricty into mechanical motion to turn the propeller to move air. Efficency is how we measure how much of the power, the watts, that our battery delivers to the motor is actually turned into useful work and how much is wasted as heat. A higher efficency motor delivers more energy to the motor, and wastes less. A typical brushed motor, say a speed 400, is only about 40-50% efficent. Only about half the watts delivered to the motor actualy end up as useful work turning the propeller. The rest is wasted. Motors that have a "speed" designation, like speed 400, are brushed motors. There are other names for brushed motors but the "speed" term is a common one. They are inexpensive and they work. For example, you can buy a speed 400 motor and electronic speed control, ESC, for \$35. A comparable brushless motor/ESC combination would typically cost 3 to 4 times that much. Brushless motors tend to be more efficent. They typically deliver 70-90% of that input power to the propeller, Thus you get better performance per watt with brushless motors. Seen a different way, if you use a brushless motor, then, for the same flying performance you will use less energy which means you battery will last longer. Or you can use a similar size and weight brushless motor and get much higher performance because the motor turns more of the watts from the battery into useful work of turning the propeller. So, as with many decisions we make, this is a cost benefit decision. Am I willing to pay more to get more? That is up to you. THE BATTERY IS MORE THAN JUST THE FUEL TANK Think of the battery as the fuel tank plus the fuel pump and a supercharger all rolled into one. It feeds/pushes energy to the motor. So you have to look at the battery and the motor as one unit when you are sizing power systems for electic planes. In many cases we start with the battery when we size our systems because the motor can't deliver the power to the prop if the battery can't deliver the power to the motor. The higher the voltage rating of the battery, the higher the pressure, like a supercharger on a car engine. More pressure delivers more air/fuel misture to the engine which allows the engine to produce more power to turn the wheels of the car. Higher voltage pushes more electicity into the motor to produce more power. Using our electric motors, a given motor may take 10 amps ( the quantity of electricity flowing ) at 8.4 volts ( the pressure at which the electricty is being delivered) to spin a certain propeller. We would say that the battery is delivering, or that the motor is drawing 84 watts, ie: 8.4V x 10A. If you bump up the voltage to 9.6 volts, the battery can ram in more amps deliveing more energy to the motor which will produce more power to the propeller. In this example, if we move from an 8.4V battery pack to a 9.6V battery pack the motor may now take 12 amps. This will typically spin the motor faster with any given propeller or allow it to turn a larger propeller at the same speed. However, if you bump up the pressure too much, you can break something. Putting a big supercharger on an engine that is not designed for it will break parts of the engine. Too much voltage can over power your electric motor and damage it. So there is a balance that has to be struck. Different motors can take different amounts of power, watts, volts X amps, without damage. For example, a speed 400 motor might be fine taking 10 amps at 9.6 volts or 96 watts. However a speed 280 motor will have a short life with the same combination of volts and amps. If you match the right battery with the right motor, you get good performance without damage to the motor. In many cases airplane designers will design planes around a specific motor battery combination so that they match the size and weight of the plane to the power system for good performance. PROPELLERS Propellers are sized by diamater and pitch. The diamater of the propeller determines the volume of air the propeller will move, producing thrust, or pushing force. Roughly speaking the diamater of the propeller will have the biggest impact on the size and weight of the plane that we can fly. Larger, heavier planes will typically fly better with larger diamater propellers. Pitch refers to the angle of the propeller blade and refers to the distance the propeller would move forward if there were no slippage in the air. So a 7 inch pitch propeller would move forward 7 inches per rotation, if there were no slippage in the air. If we combine pitch with the rotational speed of the propeller we can calculate the pitch "speed" of the propeller. So, at 10000 reveloutions per minute, that prop would move 7000 inches forward 70,000 inche per minute. If we do the math, that comes out to a little over 66 miles per hour. By changing the diamater and the pitch of the propeller we can have a similar effect to changing the gears in your car or a bicycle. It will be harder for your motor to turn a 9X7 propeller than an 8X7 propeller. And it would be harder to turn a 9X7 propeller than a 9X6 propeller. The larger, steeper pitched propellers will require more energy, more watts, more horsepower, to turn them. Therefore we need to balance the diamater and pitch with the power or wattage of the motor/battery system. Fortunately we don't actually have to do this as motor manufacturers will often publish suggested propellers to use with a given motor/battery combination. We can use these as our starting point. If we want we can try different propellers that are near these specifications to see how they work with our airplane. GEARBOXES While unusual on glow or gas planes, gearboxes are common on electric planes. Their primary function is similar to the transmission on a car. The greater the gear ratio, the higher the numerical value, the slower the propeller will turn but the larger the propeller we can turn. So you can use a gearbox to help provide more thrust so you can fly larger planes with a given motor. However you will be turning the propeller slower so the plane will not go as fast. With direct drive, that is when the propeller is directly attched to the motor shaft, we are running in high gear ( no gear reduction). Like pulling your car away from the light in high gear. Assuming the motor doesn't stall, acceloration will be slow, but over time you will hit a high top end! Typically direct dirve propellers on a given motor will have a smaller diamater. With the geared motor, it would be like pulling away from the green light in first gear - tons of low end power and lots of acceloration, but your top speed is reduced. So, by matching up the right gear ratios made up of the propeller and, optionally, a gearbox we can adjust the kind of performance we can get out of a given battery/motor combination. NOW WE CAN START TO MATCH UP THE PIECES! The simplest approach I have seen to figuring power systems in electrics is input watts per pound of "all up" airplane weight. The following guidelines were developed before brushless motors were common but it seems to hold pretty well so we will use it regardless of what kind of motor is being used. 50 watts per pound = Casual/scale flying 75 watts per pound = Sport flying and sport aerobatics 100 watts per pound = agressive aerobatics and mild 3D 150 watts per pound = all out performance. Remember that Watts = Volts X Amps. This is a power measuremet. In case you were wondering, 746 watts equals 1 horsepower, . AN EXAMPLE! This should be fun. Let's see where these forumlas take us! We will use a 24 ounce, 1.5 pound plane as our example. If we want basic flight you will need 50 watts per pound or about 75 watts input to your motor for this 1.5 pound plane. That is, 50 watts per pound X 1.5 pounds = 75 watts needed for basic flying performance. If you want a little more spirited plane, we could use 75 watts X 1.5 pounds which is about about 112.5 watts. Lets use 100 watts as the total target, just to be simple, shall we? I am going to use a lot of round numbers here. I hope you can follow. The Battery: If we use an 8 cell NiMh battery pack at 9.6 V it will have to deliver 10.4 amps to hit our 100 watts input target ( 100/9.6 = 10.41amps) If my battery pack cells are NiMh cells that are rated at 10C then I need an 8 cell pack rated at 1100 mah to be able to deliver 11 amps. Sounds about right. Now I select a motor that can handle 100 watts or about 10.4 amps at 9.6 Volts. From experience we know this could be a speed 400, a speed 480 or some kind of a brushless motor. We now need a propeller that will cause the motor to draw about 100 watts. I don't know off the top of my head what that would be. I would go to some mfg chart - GWS has good charts! http://www.gwsus.com/english/product...tem/edp400.htm I see that if I use a direct drive speed 400 with a 5X4.3 prop at 9.6V then the motor will draw about 12.4 amps or about 119 watts. This would be a good candidate motor/prop for the plane using a 9.6V pack that can put out 12.4 or more amps. This would be a set-up for a fast plane as that motor will spin that small prop very fast. However maybe I don't want such a fast plane but one with a really good climb and lots of low end pull to help out a new pilot who is in training. I can also use a speed 400 with a 2.38 gearbox and run it at 9.6V spinning a 9X7 prop and run at about 12.8 amps for 120 watts. The larger prop will give this plane a strong climb, but since the prop speed has been reduced by 2.38 times, it won't be as fast. Spining a bigger prop gives me more thrust but a lower top speed typically. Back to battery packs and motors So if I shop for a 9.6V pack to be able to handle about 15-20 amps, I should do just fine and not over stress the batteries. In NiMh that would probably be a 2/3 or 4/5 A pack of about 1100 -1500 mah capacity, depending on the quality of the cells. We view the battery and motor as a linked unit with a target power profile, in this case about 100 watts. We use the prop and gearbox, if any, to produce the manner in which we want to deliver that power to the air to pull/push the plane. If this is a pusher, I may not have clearence to spin that big prop so I have to go for the smaller but faster prop combo. If this is a puller, then I can choose my prop by grond clearence or some other criteria and match a gear box to it. See, that was easy, right? But we are not done! Oh no! I could try to do it with a 2 cell lithium pack rated 7.4V. To get 100 watts I now need a pack that can deliver 13.5 amps and a motor/prop combinatin that will draw that much. So if I have 10 C rated lithiums, then the pack better be at least 1350 mah. Probably use a 1500 mah pack to be safe. Well, when I look at the chart for the geared speed 400 I see that, regardless of prop, at 7.4V I am not going to have enough voltage ( pressure) to push 13 amps into this motor. So the 2 cell lithium won't meet my performance goal of 100 watts+ per pound using this gear box. If I go back to the charts and look at a differnet gear boxes I can't hit my power goals using 7.4V. Maybe we go back to direct drive. http://www.gwsus.com/english/product...tem/edp400.htm We see that the best I can get this speed 400 to do is a total of 70 watts at 7.2V ( close enough ) so I can't hit my power goals using a speed 400 at this voltage. but 70 watts would be about 48 watts per pound so I could have a flyable plane, but not an aerobatic plane using this two cell pack. REALITY CHECK! Now, in fact that is NOT how I would do this. I would decide on the watt target, go to the chart, find a combo that meets my goals, then select a battery that will meet the demand and see if my weight comes up at the target I set. A little tuning and I come up with a workable combo Brushed Motors http://www.hobby-lobby.com/elecmot.htm Brushless Motors http://www.hobby-lobby.com/brushless-motors.htm Battery Packs - NIMH http://www.cheapbatterypacks.com/mai...=445976&ctype= http://www.hobby-lobby.com/hydride.htm Battery Packs - LiPo http://www.cheapbatterypacks.com/mai...gid=tp&sort=PL http://www.hobby-lobby.com/lithium-polymer.htm Gearboxes - Speed 400 & 480 examples http://www.hobby-lobby.com/gear400.htm http://www.hobby-lobby.com/gear480.htm A series of posts on electric power system basics http://www.wattflyer.com/forums/showthread.php?t=1933
 Mar 05, 2006, 09:29 AM Registered User Joined Mar 2006 41 Posts hehehe thanks for the replys
 Mar 05, 2006, 11:34 AM Wanna play, ya gotta pay. Glendale, Arizona Joined Nov 2005 291 Posts aeajr......Thankyou for that informative thread. Wow..I learned alot. It's guys like you that make it easier for guys like me. Thanks.
 Mar 05, 2006, 01:18 PM Proud member of LISF and ESL LI, New York, USA Joined Mar 2003 24,240 Posts That's the idea Stallion!
 Mar 05, 2006, 01:20 PM Registered User Joined Mar 2006 41 Posts took me ages to read it but very good!
 Mar 05, 2006, 02:19 PM Proud member of LISF and ESL LI, New York, USA Joined Mar 2003 24,240 Posts Imangine how long it took to write!
Mar 05, 2006, 02:27 PM
Registered User
Joined Mar 2006
41 Posts
Quote:
 Originally Posted by aeajr Imangine how long it took to write!
 Mar 05, 2006, 05:39 PM Registered User Los Angeles, CA Joined Feb 2006 399 Posts damn, aeajr should get some type of award. lots of detailed information in all his posts.
 Mar 05, 2006, 06:26 PM Proud member of LISF and ESL LI, New York, USA Joined Mar 2003 24,240 Posts I accept large cash donations, 3+ Meter sailplanes and cool little parkflyers. Or, just a thank you. That works too.
 Mar 05, 2006, 09:03 PM Registered User Los Angeles, CA Joined Feb 2006 399 Posts thank you, lol
 Mar 06, 2006, 11:44 AM Suspended Account Queens, NY Joined Nov 2005 603 Posts isn't that all common sense?
Mar 07, 2006, 02:28 AM
Got shenpa?
Los Angeles
Joined May 2004
10,940 Posts
Quote:
 Originally Posted by badinstincts isn't that all common sense?
I wish it was! I have a fairly strong technical background, I've been familiar with things like watts and volts and amps since my age was in single digits. I studied physics for years, so simple classical mechanics (force, mass, acceleration, etc) was all baby stuff to me. All the same, I had not the faintest idea how to choose a powerplant for a model plane when I started flying RC about 22 months ago!

This hit home when I saw my neighbours kid tossing a cheap foam glider he had bought from a nearby Pick'n'Save (now Big Lots). I immediately thought of converting that glider to RC, but had not the faintest idea what motor(s), battery, or prop to use.

It was through the kindness of GPW on the Foamies forum that I first heard the simple rules-of-thumb that Aeajr posted above.

Since that time, I've taken those simple rules and improved on them, and put the results into an easy-to-use online calculator program. In honour of GPW's joking suggestion, I called it WebOCalc. I wanted to give something back to this community for teaching me so much, so WebOCalc is Free (as in cost, and as in Freedom).

WebOCalc asks you for only a few numbers - it needs to know the wingspan and chord, the weight of your model, how many watts you intend to put through the motor, and what type of motor (cheap ferrite magnet can motor, expensive cobalt magnet motor, cheap brushless motor, expensive brushless motor, etc) you're using. It then predicts how the model will fly, in plain English.

WebOCalc is written in Javascript, and it runs in your Internet browser. That means it works on Windows, Mac's, Linux, FreeBSD, and just about any other modern operating system, so nobody gets left out. I tested it with Firefox, Opera, and Konqueror, and I hear others have used it successfully on newer versions of Safari and Internet Explorer.

You can try out WebOCalc or download it from my RC Groups website, http://flbeagle.rchomepage.com . Click on "Software", then "WebOCalc".

-Flieslikeabeagle
Last edited by flieslikeabeagl; Mar 07, 2006 at 02:34 AM.

 Thread Tools

 Similar Threads Category Thread Thread Starter Forum Replies Last Post How do Brushless Motors Work? RazorB Electric Plane Talk 5 Mar 12, 2002 01:39 PM How do buddy boxes work? AirVenture Beginner Training Area (Aircraft-Electric) 7 Feb 07, 2002 09:14 PM How do the post counters work? Tim Jonas Life, The Universe, and Politics 2 Dec 23, 2001 06:45 AM How do stator rings work? Quartz Power Systems 1 Jun 07, 2001 02:53 PM How do postal permits work? jimbarstow Life, The Universe, and Politics 3 May 21, 2001 01:45 PM